1. Choudhri SA, Feigenbaum SK, Pepose JS. Factors predictive of LASIK flap thickness with the Hansatome zero compression microkeratome.
J Refract Surg 2005;21:253-259.
2. Seiler T, Quurke AW. Iatrogenic keratectasia after LASIK in a case of forme fruste keratoconus.
J Cataract Refract Surg 1998;24:1007-1009.
3. Seiler T, Koufala K, Richter G. Iatrogenic keratectasia after laser in situ keratomileusis.
J Refract Surg 1998;14:312-317.
4. Koch DD. The riddle of iatrogenic keratectasia.
J Cataract Refract Surg 1999;25:453-454.
5. Yildirim R, Aras C, Ozdamar A, et al. Reproducibility of corneal flap thickness in laser in situ keratomileusis using the Hansatome microkeratome.
J Cataract Refract Surg 2000;26:1729-1732.
6. Giledi O, Mulhern MG, Espinosa M, et al. Reproducibility of LASIK flap thickness using the Hansatome microkeratome.
J Cataract Refract Surg 2004;30:1031-1037.
7. Krueger RR, Dupps WJ Jr. Biomechanical effects of femtosecond and microkeratome-based flap creation: prospective contralateral examination of two patients.
J Refract Surg 2007;23:800-807.
8. Alió JL, Piñero DP. Very high-frequency digital ultrasound measurement of the LASIK flap thickness profile using the IntraLase femtosecond laser and M2 and Carriazo-Pendular microkeratomes.
J Refract Surg 2008;24:12-23.
9. Choi SK, Kim JH, Lee D, et al. Creation of an extremely thin flap using IntraLase femtosecond laser.
J Cataract Refract Surg 2008;34:864-867.
10. Kohnen T, Thomala MC, Cichocki M, Strenger A. Internal anterior chamber diameter using optical coherence tomography compared with white-to-white distances using automated measurements.
J Cataract Refract Surg 2006;32:1809-1813.
11. Li Y, Netto MV, Shekhar R, et al. A longitudinal study of LASIK flap and stromal thickness with high-speed optical coherence tomography.
Ophthalmology 2007;114:1124-1132.
12. Pallikaris IG, Papatzanaki ME, Stathi EZ, et al. Laser in situ keratomileusis.
Lasers Surg Med 1990;10:463-468.
13. Behrens A, Langenbucher A, Kus MM, et al. Experimental evaluation of two current-generation automated microkeratomes: the Hansatome and the Supratome.
Am J Ophthalmol 2000;129:59-67.
14. Sarkisian KA, Petrov AA. Experience with the Nidek MK-2000 microkeratome in 1,220 cases.
J Refract Surg 2001;17(2 Suppl):S252-S254.
15. Choi YI, Park SJ, Song BJ. Corneal flap dimensions in laser in situ keratomileusis using the innovatome automatic microkeratome.
Korean J Ophthalmol 2000;14:7-11.
16. Shemesh G, Dotan G, Lipshitz I. Predictability of corneal flap thickness in laser in situ keratomileusis using three different microkeratomes.
J Refract Surg 2002;18(3 Suppl):S347-S351.
17. Spadea L, Cerrone L, Necozione S, Balestrazzi E. Flap measurements with the Hansatome microkeratome.
J Refract Surg 2002;18:149-154.
18. Arbelaez MC. Nidek MK 2000 microkeratome clinical evaluation.
J Refract Surg 2002;18(3 Suppl):S357-S360.
19. Flanagan GW, Binder PS. Precision of flap measurements for laser in situ keratomileusis in 4428 eyes.
J Refract Surg 2003;19:113-123.
20. Solomon KD, Donnenfeld E, Sandoval HP, et al. Flap thickness accuracy: comparison of 6 microkeratome models.
J Cataract Refract Surg 2004;30:964-977.
21. Duffey RJ. Thin flap laser in situ keratomileusis: flap dimensions with the Moria LSK-One manual microkeratome using the 100-microm head.
J Cataract Refract Surg 2005;31:1159-1162.
22. Solomon KD, Donnenfeld E, Sandoval HP, et al. Flap thickness accuracy: comparison of 6 microkeratome models.
J Cataract Refract Surg 2004;30:964-977.
23. Holzer MP, Vargas LG, Sandoval HP, et al. Corneal flap complications in refractive surgery. Part 1: development of an experimental animal model.
J Cataract Refract Surg 2003;29:795-802.
24. Ambrósio R Jr, Wilson SE. Complications of laser in situ keratomileusis: etiology, prevention, and treatment.
J Refract Surg 2001;17:350-379.
25. Kurtz RM, Horvath C, Liu HH, et al. Lamellar refractive surgery with scanned intrastromal picosecond and femtosecond laser pulses in animal eyes.
J Refract Surg 1998;14:541-548.
26. Sarayba MA, Juhasz T, Chuck RS, et al. Femtosecond laser posterior lamellar keratoplasty: a laboratory model.
Cornea 2005;24:328-333.
27. Soong HK, Mian S, Abbasi O, Juhasz T. Femtosecond laser-assisted posterior lamellar keratoplasty: initial studies of surgical technique in eye bank eyes.
Ophthalmology 2005;112:44-49.
28. Seitz B, Langenbucher A, Hofmann-Rummelt C, et al. Nonmechanical posterior lamellar keratoplasty using the femtosecond laser (femto-plak) for corneal endothelial decompensation.
Am J Ophthalmol 2003;136:769-772.
29. Seitz B, Brünner H, Viestenz A, et al. Inverse mushroom-shaped nonmechanical penetrating keratoplasty using a femtosecond laser.
Am J Ophthalmol 2005;139:941-944.
30. Jonas JB, Vossmerbaeumer U. Femtosecond laser penetrating keratoplasty with conical incisions and positional spikes.
J Refract Surg 2004;20:397
31. Pfaeffl WA, Kunze M, Zenk U, et al. Predictive factors of femtosecond laser flap thickness measured by online optical coherence pachymetry subtraction in sub-Bowman keratomileusis.
J Cataract Refract Surg 2008;34:1872-1880.
32. Binder PS. Flap dimensions created with the IntraLase FS laser.
J Cataract Refract Surg 2004;30:26-32.
33. Sutton G, Hodge C. Accuracy and precision of LASIK flap thickness using the IntraLase femtosecond laser in 1000 consecutive cases.
J Refract Surg 2008;24:802-806.
34. Li Y, Shekhar R, Huang D. Corneal pachymetry mapping with high-speed optical coherence tomography.
Ophthalmology 2006;113:792-9.e2
35. von Jagow B, Kohnen T. Corneal architecture of femtosecond laser and microkeratome flaps imaged by anterior segment optical coherence tomography.
J Cataract Refract Surg 2009;35:35-41.
36. Dawson DG, Grossniklaus HE, McCarey BE, Edelhauser HF. Biomechanical and wound healing characteristics of corneas after excimer laser keratorefractive surgery: is there a difference between advanced surface ablation and sub-Bowman's keratomileusis?
J Refract Surg 2008;24:S90-S96.