1. Kerrgan-Baumrind LA, Quigley HA, Pease ME, et al. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons.
Invest Ophthalmol Vis Sci 2000;41:741-748.
2. Quigley HA, Addicks EM, Green WR. Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy.
Arch Ophthalmol 1982;100:135-146.
3. Quigley HA, Dunkelberger GR, Green WR. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma.
Am J Ophthalmol 1989;107:453-464.
4. Harwerth RS, Quigley HA. Visual field defects and retinal ganglion cell losses in patients with glaucoma.
Arch Ophthalmol 2006;124:853-859.
5. Maddess T, Goldberg I, Dobinson J, et al. Testing for glaucoma with the spatial frequency doubling illusion.
Vision Res 1999;39:4258-4273.
6. Soliman MA, de Jong LA, Ismaeil AA, et al. Standard achromatic perimetry, short wavelength automated perimetry, and frequency doubling technology for detection of glaucoma damage.
Ophthalmology 2002;109:444-454.
7. Kogure S, Toda Y, Tsukahara S. Prediction of future scotoma on conventional automated static perimetry using frequency doubling technology perimetry.
Br J Ophthalmol 2006;90:347-352.
8. Medeiros FA, Sample PA, Weinreb RN. Frequency doubling technology perimetry abnormalities as predictors of glaucomatous visual field loss.
Am J Ophthalmol 2004;137:863-871.
9. Kamantigue MEG, Joson PJ, Chen PP. Prediction of visual field defects on standard automated perimetry by screening C-20-1 frequency doubling technology perimetry.
J Glaucoma 2006;15:35-39.
10. Huang XR, Knighton RW. Linear birefringence of the retinal nerve fiber layer measured in vitro with a multispectral imaging micropolarimeter.
J Biomed Opt 2002;7:199-204.
11. Dreher AW, Bailey ED. Assessment of the retinal nerve fiber layer by scanning-laser polarimetry. SPIE 1993;1877:266-271.
12. Zangwill LM, Medeiros FA, Bowd C, Weinreb RN. In: Grehn F, Stamper R, Optic nerve imaging: recent advances.
Glaucoma. 2004. Vol.2. Berlin: Springer Verlag; p. 63-91.
13. Reus NJ, Colen TP, Jemij HG. Visualization of localized retinal nerve fiber layer defects with the GDx with individualized and with fixed compensation of anterior segment birefringence.
Ophthalmology 2003;110:1512-1516.
14. Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography.
Science 1991;254:1178-1181.
15. Izatt JA, Hee MR, Swanson EA, et al. Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography.
Arch Ophthalmol 1994;112:1584-1589.
16. Schuman JS, Hee MR, Puliafito CA, et al. Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography.
Arch Ophthalmol 1995;113:586-596.
17. Kass MA, Heuer DK, Higginbotham EJ, et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma.
Arch Ophthalmol 2002;120:701-713.
18. European Glaucoma Prevention Study (EGPS) Group. Results of the European Glaucoma Prevention Study.
Ophthalmology 2005;112:366-375.
19. Zhou Q, Weinreb RN. Individualized compensation of anterior segment birefringence during scanning laser polarimetry.
Invest Ophthalmol Vis Sci 2002;43:2221-2228.
20. Weinreb RN, Bowd C, Zangwill LM. Glaucoma detection using scanning laser polarimetry with variable corneal polarization compensation.
Arch Ophthalmol 2003;121:218-224.
21. Hodapp E, Parrish RK, Anderson DR. Clinical decisions in glaucoma. 1993. Vol.1. St. Louis: Mosby; p. 52-63.
22. Beck RW, Bergstrom TJ, Lichter PR. A clinical comparison of visual field testing with a new automated perimeter, the Humphrey Field Analyzer and the Goldmann perimeter.
Ophthalmology 1985;92:77-82.
23. Sample PA, Bosworth CF, Blumenthal EZ, et al. Visual functionspecificperimetry for indirect comparison of different ganglioncell populations in glaucoma.
Invest Ophthalmol Vis Sci 2000;41:1783-1790.
24. Harwerth R, Carter-Dawson L, Shen F, et al. Ganglion cell losses underlying visual field defects from experimental glaucoma.
Invest Ophthalmol Vis Sci 1999;40:2242-2250.
25. White AJ, Sun H, Swanson WH, Lee BB. An examination of physiological mechanisms underlying the frequency-doubling illusion.
Invest Ophthalmol Vis Sci 2002;43:3590-3599.
26. Cello KE, Nelson-Quigg JM, Johnson CA. Frequency doubling technology perimetry for detection of glaucomatous visual field loss.
Am J Ophthalmol 2000;129:314-322.
27. Johnson CA, Samuels SJ. Screening for glaucomatous visual field loss with frequency-doubling perimetry.
Invest Ophthalmol Vis Sci 1997;38:413-425.
28. Quigley HA. Identification of glaucoma-related visual field abnormality with the screening protocol of frequency doubling technology.
Am J Ophthalmol 1998;125:819-829.
29. Maddess T, Henry GH. Performance of nonlinear visual units in ocular hypertension and glaucoma. Clin Vis Sci 1992;7:371-383.
30. Brusini P, Busatto P. Frequency doubling perimetry in glaucoma early diagnosis.
Acta Ophthalmol Scand 1998;76(S227):23-24.
31. Burnstein Y, Ellish NJ, Magbalon M, et al. Comparison of frequency doubling perimetry with Humphrey visual field analysis in a glaucoma practice.
Am J Ophthalmol 2000;129:328-333.
32. Johnson CA, Samuels JS. Screening for glaucomatous visual field loss with frequency-doubling perimetry.
Invest Ophthalmol Vis Sci 1997;38:413-425.
33. Patel SC, Friedman DS, Varadkar P, et al. Algorithm for interpreting the results of frequency doubling perimetry.
Am J Ophthalmol 2000;129:323-327.
34. Sample PA, Medeiros FA, Racette L, et al. Identifying glaucomatous vision loss with visual-function-specific perimetry in the diagnostic innovations in glaucoma study.
Invest Ophthalmol Vis Sci 2006;47:3381-3389.
35. Paczka JA, Friedman DS, Quigley HA, et al. Diagnostic capabilities of frequency doubling technology, scanning laser polarimetry and nerve fiber layer photographs to distinguish glaucomatous damage.
Am J Ophthalmol 2001;131:188-197.
36. Serguhn S, Spiegel D. Comparison of frequency doubling perimetry and standard achromatic computerized perimetry in patients with glaucoma.
Graefes Arch Clin Exp Ophthalmol 2001;239:351-355.
37. Fukushima A, Shirakashi M, Yaoeda K, et al. Relationship between indices of Humphrey perimetry and frequency doubling technology perimetry in glaucoma.
J Glaucoma 2004;13:114-119.
38. Sponsel WE, Arango S, Trigo Y, et al. Clinical classification of glaucomatous visual field loss by frequency doubling perimetry.
Am J Ophthalmol 1998;125:830-836.
39. Medeiros FA, Zangwill LM, Bowed C, et al. Fourier analysis of scanning laser polarimetry measurements with variable corneal compensation in glaucoma.
Invest Ophthalmol Vis Sci 2003;44:2606-2612.
40. Medeiros FA, Zangwill LM, Bowed C, et al. Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomopraphy.
Am J Ophthalmol 2005;139:44-55.
41. Budenz DL, Michael A, Chang RT, et al. Sensitivity and specificity of the Stratus OCT for perimetric glaucoma.
Ophthalmology 2005;112:3-9.
42. Bagga H, Greenfield DS, Feuer W, et al. Scanning Laser Polarimetry With Variable Corneal Compensation and Optical Coherence Tomography in Normal and Glaucomatous Eyes.
Am J Ophthalmol 2003;135:521-529.
43. Kanamori A, Nakamura M, Escano MFT, et al. Evaluation of the Glaucomatous Damage on Retinal nerve fiber layer thickness measured by Optical Coherence Tomography.
Am J Ophthalmol 2003;135:513-520.
44. Blumenthal EZ, Williams JM, Weinreb RN, et al. Reproducibility of nerve fiber layer thickness measurements by use of optical coherence tomography.
Ophthalmology 2000;107:2278-2282.
45. Carpineto P, Ciancaglini M, Zuppardi E, et al. Reliability of nerve fiber layer thickness measurements using optical coherence tomography in normal and glaucomatous eyes.
Ophthalmology 2003;110:190-195.
46. Kook MS, Sung K, Park RH, et al. Reproducibility of scanning laser polarimetry (GDx) of peripapillary retinal nerve fiber layer thickness in normal subjects.
Graefes Arch Clin Exp Ophthalmol 2001;239:118-121.
47. Reus NJ, Nemij HG. The relationship between standard automated perimetry and GDx VCC measurements.
Invest Ophthalmol Vis Sci 2004;45:840-845.
48. Kim SH, Yang SJ, Kook MS, et al. Correlation Between Frequency Doubling Technology Perimetry and Scanning Laser Polarimetry in Glaucoma Suspects and Glaucomatous Eyes.
Korean J ophthalmol 2004;18:89-99.