1. Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review.
JAMA 2014;311:1901-11.
2. Sommer A, Katz J, Quigley HA, et al. Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss.
Arch Ophthalmol 1991;109:77-83.
3. de Carlo TE, Romano A, Waheed NK, Duker JS. A review of optical coherence tomography angiography (OCTA).
Int J Retina Vitreous -2015. 1:5.
4. Lee JC, Grisafe DJ, Burkemper B, et al. Intrasession repeatability and intersession reproducibility of peripapillary OCTA vessel parameters in non-glaucomatous and glaucomatous eyes.
Br J Ophthalmol 2021;105:1534-41.
5. Rao HL, Pradhan ZS, Suh MH, et al. Optical coherence tomography angiography in glaucoma.
J Glaucoma 2020;29:312-21.
6. Flammer J, Orgul S. Optic nerve blood-flow abnormalities in glaucoma.
Prog Retin Eye Res 1998;17:267-89.
7. Chen CL, Bojikian KD, Gupta D, et al. Optic nerve head perfusion in normal eyes and eyes with glaucoma using optical coherence tomography-based microangiography.
Quant Imaging Med Surg 2016;6:125-33.
8. Flammer J, Orgul S, Costa VP, et al. The impact of ocular blood flow in glaucoma.
Prog Retin Eye Res 2002;21:359-93.
9. Flammer J. The vascular concept of glaucoma.
Surv Ophthalmol 1994;38:Suppl. S3-6.
10. Anderson DR. Glaucoma, capillaries and pericytes. 1. Blood flow regulation.
Ophthalmologica 1996;210:257-62.
11. Mammo Z, Heisler M, Balaratnasingam C, et al. Quantitative optical coherence tomography angiography of radial peripapillary capillaries in glaucoma, glaucoma suspect, and normal eyes.
Am J Ophthalmol 2016;170:41-9.
12. Trivli A, Koliarakis I, Terzidou C, et al. Normal-tension glaucoma: pathogenesis and genetics.
Exp Ther Med 2019;17:563-74.
14. Huo YJ, Thomas R, Guo Y, et al. Topographic differences in superficial macular vessel density in eyes with early primary open-angle glaucoma and normal tension glaucoma.
Ophthalmic Res 2023;66:465-73.
15. Akagi T, Iida Y, Nakanishi H, et al. Microvascular density in glaucomatous eyes with hemifield visual field defects: an optical coherence tomography angiography study.
Am J Ophthalmol 2016;168:237-49.
16. Brusini P, Filacorda S. Enhanced Glaucoma Staging System (GSS 2) for classifying functional damage in glaucoma.
J Glaucoma 2006;15:40-6.
17. Kumar RS, Anegondi N, Chandapura RS, et al. Discriminant function of optical coherence tomography angiography to determine disease severity in glaucoma.
Invest Ophthalmol Vis Sci 2016;57:6079-88.
18. Liu L, Jia Y, Takusagawa HL, et al. Optical coherence tomography angiography of the peripapillary retina in glaucoma.
JAMA Ophthalmol 2015;133:1045-52.
19. Chen CL, Zhang A, Bojikian KD, et al. Peripapillary retinal nerve fiber layer vascular microcirculation in glaucoma using optical coherence tomography-based microangiography.
Invest Ophthalmol Vis Sci 2016;57:OCT475-85.
20. Sakaguchi K, Higashide T, Udagawa S, et al. Comparison of sectoral structure-function relationships in glaucoma: vessel density versus thickness in the peripapillary retinal nerve fiber layer.
Invest Ophthalmol Vis Sci 2017;58:5251-62.
21. Mitchell P, Leung H, Wang JJ, et al. Retinal vessel diameter and open-angle glaucoma: the Blue Mountains Eye Study.
Ophthalmology 2005;112:245-50.
22. Jonas JB, Nguyen XN, Naumann GO. Parapapillary retinal vessel diameter in normal and glaucoma eyes. I. Morphometric data.
Invest Ophthalmol Vis Sci 1989;30:1599-603.
23. Hwang JC, Konduru R, Zhang X, et al. Relationship among visual field, blood flow, and neural structure measurements in glaucoma.
Invest Ophthalmol Vis Sci 2012;53:3020-6.
24. Sehi M, Goharian I, Konduru R, et al. Retinal blood flow in glaucomatous eyes with single-hemifield damage.
Ophthalmology 2014;121:750-8.
25. Geyman LS, Garg RA, Suwan Y, et al. Peripapillary perfused capillary density in primary open-angle glaucoma across disease stage: an optical coherence tomography angiography study.
Br J Ophthalmol 2017;101:1261-8.
26. Van Eijgen J, Heintz A, van der Pluijm C, et al. Normal tension glaucoma: a dynamic optical coherence tomography angiography study.
Front Med (Lausanne) 2023;9:1037471.
27. Cho CW, Jung WH, Kim JL. Analysis of retinal capillary using optical coherence tomographic angiography of unilateral normal tension glaucoma.
J Korean Ophthalmol Soc 2021;62:1397-406.
28. Baniasadi N, Paschalis EI, Haghzadeh M, et al. Patterns of retinal nerve fiber layer loss in different subtypes of open angle glaucoma using spectral domain optical coherence tomography.
J Glaucoma 2016;25:865-72.
29. Alasil T, Wang K, Yu F, et al. Correlation of retinal nerve fiber layer thickness and visual fields in glaucoma: a broken stick model.
Am J Ophthalmol 2014;157:953-59.
30. Jo YH, Sung KR, Shin JW. Effects of age on peripapillary and macular vessel density determined using optical coherence tomography angiography in healthy eyes.
Invest Ophthalmol Vis Sci 2019;60:3492-8.
31. Rao HL, Pradhan ZS, Weinreb RN, et al. Determinants of peripapillary and macular vessel densities measured by optical coherence tomography angiography in normal eyes.
J Glaucoma 2017;26:491-7.
32. Chon B, Qiu M, Lin SC. Myopia and glaucoma in the South Korean population.
Invest Ophthalmol Vis Sci 2013;54:6570-7.
34. Kallab M, Hommer N, Schlatter A, et al. Combining vascular and nerve fiber layer thickness measurements to model glaucomatous focal visual field loss.
Ann N Y Acad Sci 2022;1511:133-41.
35. Jeong Y, Kim YK, Jeoung JW, Park KH. Comparison of optical coherence tomography structural parameters for diagnosis of glaucoma in high myopia.
JAMA Ophthalmol 2023;141:631-9.
36. Shen AJ, Urrea AL, Lee JC, et al. Repeatability and reproducibility of 4.5 by 4.5 mm peripapillary optical coherence tomography angiography scans in glaucoma and non-glaucoma eyes.
J Glaucoma 2022;31:773-82.
37. Venugopal JP, Rao HL, Weinreb RN, et al. Repeatability of vessel density measurements of optical coherence tomography angiography in normal and glaucoma eyes.
Br J Ophthalmol 2018;102:352-7.
38. Manalastas PIC, Zangwill LM, Saunders LJ, et al. Reproducibility of optical coherence tomography angiography macular and optic nerve head vascular density in glaucoma and healthy eyes.
J Glaucoma 2017;26:851-9.
39. Yanagi M, Kawasaki R, Wang JJ, et al. Vascular risk factors in glaucoma: a review.
Clin Exp Ophthalmol 2011;39:252-8.
40. Ishibashi S, Hirose N, Tawara A, Kubota T. Effect of latanoprost on the diurnal variations in the intraocular and ocular perfusion pressure in normal tension glaucoma.
J Glaucoma 2006;15:354-7.
41. Liu CJ, Ko YC, Cheng CY, et al. Changes in intraocular pressure and ocular perfusion pressure after latanoprost 0.005% or brimonidine tartrate 0.2% in normal-tension glaucoma patients.
Ophthalmology 2002;109:2241-7.