1. Freund KB, Ciardella AP, Yannuzzi LA, et al. Peripapillary detachment in pathologic myopia.
Arch Ophthalmol 2003;121:197-204.
2. Toranzo J, Cohen SY, Erginay A, Gaudric A. Peripapillary intrachoroidal cavitation in myopia.
Am J Ophthalmol 2005;140:731-2.
3. Shimada N, Ohno-Matsui K, Yoshida T, et al. Characteristics of peripapillary detachment in pathologic myopia.
Arch Ophthalmol 2006;124:46-52.
4. Shimada N, Ohno-Matsui K, Nishimuta A, et al. Peripapillary changes detected by optical coherence tomography in eyes with high myopia.
Ophthalmology 2007;114:2070-6.
5. Wei YH, Yang CM, Chen MS, et al. Peripapillary intrachoroidal cavitation in high myopia: reappraisal. Eye (Lond) 2009;23:141-4.
6. Tateno H, Takahashi K, Fukuchi T, et al. Choroidal schisis around the optic nerve in myopic eyes evaluated by optical coherence tomography. Jpn J Clin Ophthalmol 2005;59:327-31.
7. Forte R, Pascotto F, Cennamo G, de Crecchio G. Evaluation of peripapillary detachment in pathologic myopia with en face optical coherence tomography. Eye (Long) 2008;22:158-61.
8. Fujiwara T, Imamura Y, Margolis R, et al. Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes.
Am J Ophthalmol 2009;148:445-50.
9. Spaide RF, Akiba M, Ohno-Matsui K. Evaluation of peripapillary intrachoroidal cavitation with swept source and enhanced depth imaging optical coherence tomography.
Retina 2012;32:1037-44.
11. Yeh SI, Chang WC, Wu CH, et al. Characteristics of peripapillary choroidal cavitation detected by optical coherence tomography.
Ophthalmology 2013;120:544-52.
12. Akagi T, Iida Y, Nakanishi H, et al. Microvascular density in glaucomatous eyes with hemifield visual field defects: an optical coherence tomography angiography study.
Am J Ophthalmol 2016;168:237-49.
13. Suh MH, Zangwill LM, Manalastas PI, et al. Deep retinal layer microvasculature dropout detected by the optical coherence tomography angiography in glaucoma.
Ophthalmology 2016;123:2509-18.
14. Lee EJ, Lee KM, Lee SH, Kim TW. Parapapillary choroidal microvasculature dropout in glaucoma: a comparison between optical coherence tomography angiography and indocyanine green angiography.
Ophthalmology 2017;124:1209-17.
15. Suh MH, Zangwill LM, Manalastas PI, et al. Deep-layer microvasculature dropout by optical coherence tomography angiography and microstructure of parapapillary atrophy.
Invest Ophthalmol Vis Sci 2018;59:1995-2004.
16. Lee EJ, Kim TW, Kim JA, Kim JA. Parapapillary deep-layer microvasculature dropout in primary open-angle glaucoma eyes with a parapapillary γ-zone.
Invest Ophthalmol Vis Sci 2017;58:5673-80.
17. Lopilly Park HY, Lee NY, Choi JA, Park CK. Measurement of scleral thickness using swept-source optical coherence tomography in patients with open-angle glaucoma and myopia.
Am J Ophthalmol 2014;157:876-84.
18. Lee EJ, Kim TW, Lee SH, Kim JA. Underlying microstructure of parapapillary deep-layer capillary dropout identified by optical coherence tomography angiography.
Invest Ophthalmol Vis Sci 2017;58:1621-7.
19. Landis JR, Koch GG. The measurement of observer agreement for categorical data.
Biometrics 1977;33:159-74.
20. Lee KM, Lee EJ, Kim TW. Lamina cribrosa configuration in tilted optic discs with different tilt axes: a new hypothesis regarding optic disc tilt and torsion.
Invest Ophthalmol Vis Sci 2015;56:2958-67.
21. Park HY, Lee K, Park CK. Optic disc torsion direction predicts the location of glaucomatous damage in normal-tension glaucoma patients with myopia.
Ophthalmology 2012;119:1844-51.
22. Lee KS, Lee JR, Kook MS. Optic disc torsion presenting as unilateral glaucomatous-appearing visual field defect in young myopic Korean eyes.
Ophthalmology 2014;121:1013-9.
23. Choi JA, Park HY, Shin HY, Park CK. Optic disc tilt direction determines the location of initial glaucomatous damage.
Invest Ophthalmol Vis Sci 2014;55:4991-8.
24. Lee EJ, Kim TW, Kim JA, Kim JA. Central visual field damage and parapapillary choroidal microvasculature dropout in primary open-angle glaucoma.
Ophthalmology 2018;125:588-96.
25. Lee EJ, Kim TW, Kim JA, et al. Elucidation of the strongest factors influencing rapid retinal nerve fiber layer thinning in glaucoma.
Invest Ophthalmol Vis Sci 2019;60:3343-51.
26. Park HL, Kim JW, Park CK. Choroidal microvasculature dropout is associated with progressive retinal nerve fiber layer thinning in glaucoma with disc hemorrhage.
Ophthalmology 2018;125:1003-13.
27. Kwon JM, Weinreb RN, Zangwill LM, Suh MH. Parapapillary deep-layer microvasculature dropout and visual field progression in glaucoma.
Am J Ophthalmol 2019;200:65-75.
28. Kim JA, Lee EJ, Kim TW. Evaluation of parapapillary choroidal microvasculature dropout and progressive retinal nerve fiber layer thinning in patients with glaucoma.
JAMA Ophthalmol 2019;137:810-6.
29. Lee EJ, Kim JA, Kim TW. Influence of choroidal microvasculature dropout on the rate of glaucomatous progression: a prospective study. Ophthalmol Glaucoma 2020;3:25-31.
30. Ohno-Matsui K, Shimada N, Yasuzumi K, et al. Long-term development of significant visual field defects in highly myopic eyes.
Am J Ophthalmol 2011;152:256-65.