1. Shin JW, Sung KR, Lee GC, et al. Ganglion cell-inner plexiform layer change detected by optical coherence tomography indicates progression in advanced glaucoma.
Ophthalmology 2017;124:1466-1474.
2. Leung CK, Cheung CY, Weinreb RN, et al. Evaluation of retinal nerve fiber layer progression in glaucoma: a study on optical coherence tomography guided progression analysis.
Invest Ophthalmol Vis Sci 2010;51:217-222.
3. Bowd C, Zangwill LM, Weinreb RN, et al. Estimating optical coherence tomography structural measurement floors to improve detection of progression in advanced glaucoma.
Am J Ophthalmol 2017;175:37-44.
4. Mwanza JC, Budenz DL, Warren JL, et al. Retinal nerve fibre layer thickness floor and corresponding functional loss in glaucoma.
Br J Ophthalmol 2015;99:732-737.
5. Zeimer R, Asrani S, Zou S, et al. Quantitative detection of glaucomatous damage at the posterior pole by retinal thickness mapping: a pilot study.
Ophthalmology 1998;105:224-231.
6. Wong JJ, Chen TC, Shen LQ, Pasquale LR. Macular imaging for glaucoma using spectral-domain optical coherence tomography: a review.
Semin Ophthalmol 2012;27:160-166.
7. Sung KR, Wollstein G, Kim NR, et al. Macular assessment using optical coherence tomography for glaucoma diagnosis.
Br J Ophthalmol 2012;96:1452-1455.
8. Oddone F, Lucenteforte E, Michelessi M, et al. Macular versus retinal nerve fiber layer parameters for diagnosing manifest glaucoma: a systematic review of diagnostic accuracy studies.
Ophthalmology 2016;123:939-949.
9. Michelessi M, Riva I, Martini E, et al. Macular versus nerve fibre layer versus optic nerve head imaging for diagnosing glaucoma at different stages of the disease: Multicenter Italian Glaucoma Imaging Study.
Acta Ophthalmol 2019;97:e207-e215.
10. Kim YK, Ha A, Na KI, et al. Temporal relation between macular ganglion cell-inner plexiform layer loss and peripapillary retinal nerve fiber layer loss in glaucoma.
Ophthalmology 2017;124:1056-1064.
11. Zhang X, Loewen N, Tan O, et al. Predicting development of glaucomatous visual field conversion using baseline fourier-domain optical coherence tomography.
Am J Ophthalmol 2016;163:29-37.
12. Hood DC, Raza AS, de Moraes CG, et al. Glaucomatous damage of the macula.
Prog Retin Eye Res 2013;32:1-21.
13. Hwang YH, Jeong YC, Kim HK, Sohn YH. Macular ganglion cell analysis for early detection of glaucoma.
Ophthalmology 2014;121:1508-1515.
14. Marshall HN, Andrew NH, Hassall M, et al. Macular ganglion cell-inner plexiform layer loss precedes peripapillary retinal nerve fiber layer loss in glaucoma with lower intraocular pressure.
Ophthalmology 2019;126:1119-1130.
15. Shin HY, Park HL, Jung KI, et al. Glaucoma diagnostic ability of ganglion cell-inner plexiform layer thickness differs according to the location of visual field loss.
Ophthalmology 2014;121:93-99.
16. Shin JW, Sung KR, Song MK. Ganglion cell-inner plexiform layer and retinal nerve fiber layer changes in glaucoma suspects enable prediction of glaucoma development.
Am J Ophthalmol 2020;210:26-34.
17. Kim KE, Yoo BW, Jeoung JW, Park KH. Long-term reproducibility of macular ganglion cell analysis in clinically stable glaucoma patients.
Invest Ophthalmol Vis Sci 2015;56:4857-4864.
18. Hou HW, Lin C, Leung CK. Integrating macular ganglion cell inner plexiform layer and parapapillary retinal nerve fiber layer measurements to detect glaucoma progression.
Ophthalmology 2018;125:822-831.
19. Bussel II, Wollstein G, Schuman JS. OCT for glaucoma diagnosis, screening and detection of glaucoma progression.
Br J Ophthalmol 2014;98 Suppl 2:ii15-ii19.
20. Weinreb RN. World Glaucoma Association. Progression of glaucoma: the 8th consensus report of the World Glaucoma Association. The Hague: Kugler Publications; 2011. p. 119-131.
21. Leung CK, Weinreb RN, Li ZW, et al. Long-term in vivo imaging and measurement of dendritic shrinkage of retinal ganglion cells.
Invest Ophthalmol Vis Sci 2011;52:1539-1547.
22. Li ZW, Liu S, Weinreb RN, et al. Tracking dendritic shrinkage of retinal ganglion cells after acute elevation of intraocular pressure.
Invest Ophthalmol Vis Sci 2011;52:7205-7212.
23. Lee WJ, Na KI, Ha A, et al. Combined use of retinal nerve fiber layer and ganglion cell-inner plexiform layer eventbased progression analysis.
Am J Ophthalmol 2018;196:65-71.
24. Leung CK, Ye C, Weinreb RN, et al. Impact of age-related change of retinal nerve fiber layer and macular thicknesses on evaluation of glaucoma progression.
Ophthalmology 2013;120:2485-2492.
25. Inuzuka H, Sawada A, Inuzuka M, Yamamoto T. Thinning rates of retinal nerve layer and ganglion cell-inner plexiform layer in various stages of normal tension glaucoma.
Br J Ophthalmol 2019;bjophthalmol-2019-314899.
26. Pournaras CJ, Rungger-Brandle E, Riva CE, et al. Regulation of retinal blood flow in health and disease.
Prog Retin Eye Res 2008;27:284-330.
27. Burgansky-Eliash Z, Lowenstein A, Neuderfer M, et al. The correlation between retinal blood flow velocity measured by the retinal function imager and various physiological parameters.
Ophthalmic Surg Lasers Imaging Retina 2013;44:51-58.
28. Wei Y, Jiang H, Shi Y, et al. Age-related alterations in the retinal microvasculature, microcirculation, and microstructure.
Invest Ophthalmol Vis Sci 2017;58:3804-3817.
29. Emre M, Orgul S, Gugleta K, Flammer J. Ocular blood flow alteration in glaucoma is related to systemic vascular dysregulation.
Br J Ophthalmol 2004;88:662-666.
30. Satilmis M, Orgul S, Doubler B, Flammer J. Rate of progression of glaucoma correlates with retrobulbar circulation and intraocular pressure.
Am J Ophthalmol 2003;135:664-669.
31. Schmidl D, Garhofer G, Schmetterer L. The complex interaction between ocular perfusion pressure and ocular blood flow: relevance for glaucoma.
Exp Eye Res 2011;93:141-155.
32. Richter GM, Madi I, Chu Z, et al. Structural and functional associations of macular microcirculation in the ganglion cell-inner plexiform layer in glaucoma using optical coherence tomography angiography.
J Glaucoma 2018;27:281-290.
33. Wang X, Jiang C, Ko T, et al. Correlation between optic disc perfusion and glaucomatous severity in patients with open-angle glaucoma: an optical coherence tomography angiography study.
Graefes Arch Clin Exp Ophthalmol 2015;253:1557-1564.
34. Yarmohammadi A, Zangwill LM, Diniz-Filho A, et al. Optical coherence tomography angiography vessel density in healthy, glaucoma suspect, and glaucoma eyes.
Invest Ophthalmol Vis Sci 2016;57:OCT451-OCT459.
35. Xu H, Yu J, Kong X, et al. Macular microvasculature alterations in patients with primary open-angle glaucoma: a cross-sectional study.
Medicine (Baltimore) 2016;95:e4341.
36. Sung KR, Cho JW, Lee S, et al. Characteristics of visual field progression in medically treated normal-tension glaucoma patients with unstable ocular perfusion pressure.
Invest Ophthalmol Vis Sci 2011;52:737-743.