1. Weinreb RN, Khaw PT. Primary open-angle glaucoma.
Lancet 2004;363:1711-1720.
2. Casson RJ, Chidlow G, Wood JP, et al. Definition of glaucoma: clinical and experimental concepts.
Clin Exp Ophthalmol 2012;40:341-349.
3. Hood DC, Kardon RH. A framework for comparing structural and functional measures of glaucomatous damage.
Prog Retin Eye Res 2007;26:688-710.
4. Kerrigan-Baumrind LA, Quigley HA, Pease ME, et al. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons.
Invest Ophthalmol Vis Sci 2000;41:741-748.
5. Artes PH, Chauhan BC. Longitudinal changes in the visual field and optic disc in glaucoma.
Prog Retin Eye Res 2005;24:333-354.
6. Chauhan BC, McCormick TA, Nicolela MT, LeBlanc RP. Optic disc and visual field changes in a prospective longitudinal study of patients with glaucoma: comparison of scanning laser tomography with conventional perimetry and optic disc photography.
Arch Ophthalmol 2001;119:1492-1499.
7. Alencar LM, Zangwill LM, Weinreb RN, et al. Agreement for detecting glaucoma progression with the GDx guided progression analysis, automated perimetry, and optic disc photography.
Ophthalmology 2010;117:462-470.
8. Xin D, Greenstein VC, Ritch R, et al. A comparison of functional and structural measures for identifying progression of glaucoma.
Invest Ophthalmol Vis Sci 2011;52:519-526.
9. Sommer A, Katz J, Quigley HA, et al. Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss.
Arch Ophthalmol 1991;109:77-83.
10. Harwerth RS, Carter-Dawson L, Shen F, et al. Ganglion cell losses underlying visual field defects from experimental glaucoma.
Invest Ophthalmol Vis Sci 1999;40:2242-2250.
11. Nouri-Mahdavi K, Nowroozizadeh S, Nassiri N, et al. Macular ganglion cell/inner plexiform layer measurements by spectral domain optical coherence tomography for detection of early glaucoma and comparison to retinal nerve fiber layer measurements.
Am J Ophthalmol 2013;156:1297-1307.
12. Mwanza JC, Durbin MK, Budenz DL, et al. Glaucoma diagnostic accuracy of ganglion cell-inner plexiform layer thickness: comparison with nerve fiber layer and optic nerve head.
Ophthalmology 2012;119:1151-1158.
13. Na JH, Sung KR, Lee JR, et al. Detection of glaucomatous progression by spectral-domain optical coherence tomography.
Ophthalmology 2013;120:1388-1395.
14. Kim KE, Yoo BW, Jeoung JW, Park KH. Long-term reproducibility of macular ganglion cell analysis in clinically stable glaucoma patients.
Invest Ophthalmol Vis Sci 2015;56:4857-4864.
15. Kim NR, Lee ES, Seong GJ, et al. Comparing the ganglion cell complex and retinal nerve fibre layer measurements by Fourier domain OCT to detect glaucoma in high myopia.
Br J Ophthalmol 2011;95:1115-1121.
16. Kim YK, Ha A, Na KI, et al. Temporal relation between macular ganglion cell-inner plexiform layer loss and peripapillary retinal nerve fiber layer loss in glaucoma.
Ophthalmology 2017;124:1056-1064.
17. Chiang DY, Brown PO, Eisen MB. Visualizing associations between genome sequences and gene expression data using genome-mean expression prof iles.
Bioinformatics 2001;17:S49-S55.
18. Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns.
Proc Natl Acad Sci U S A 1998;95:14863-14868.
19. Liu Y, Hayes DN, Nobel A, Marron JS. Statistical significance of clustering for high-dimension, low-sample size data.
J Am Stat Assoc 2008;103:1281-1293.
20. Shin JW, Sung KR, Lee GC, et al. Ganglion cell-inner plexiform layer change detected by optical coherence tomography indicates progression in advanced glaucoma.
Ophthalmology 2017;124:1466-1474.
21. Leske MC, Heijl A, Hyman L, et al. Predictors of long-term progression in the early manifest glaucoma trial.
Ophthalmology 2007;114:1965-1972.
22. Ward JH Jr. Hierarchical grouping to optimize an objective function.
J Am Stat Assoc 1963;58:236-244.
23. Charrad M, Ghazzali N, Boiteau V, et al. Package ‘nbclust’. J Stat Softw 2014;61:1-36.
24. Duda RO, Hart PE, Stork DG. Pattern classif ication. Hoboken: John Wiley & Sons; 2012.
25. Hodapp E, Parrish RK, Anderson DR. Clinical decisions in glaucoma. Maryland Heights: Mosby; 1993.
26. Shin HY, Park HL, Jung KI, et al. Glaucoma d iagnostic ability of ganglion cell-inner plexiform layer thickness differs according to the location of visual field loss.
Ophthalmology 2014;121:93-99.
27. Alamouti B, Funk J. Retinal thickness decreases with age: an OCT study.
Br J Ophthalmol 2003;87:899-901.
28. Lee EJ, Kim TW, Weinreb RN, et al. Trend-based analysis of retinal nerve fiber layer thickness measured by optical coherence tomography in eyes with localized nerve fiber layer defects.
Invest Ophthalmol Vis Sci 2011;52:1138-1144.
29. Leung CKS, Ye C, Weinreb RN, et al. Impact of age-related change of retinal nerve fiber layer and macular thicknesses on evaluation of glaucoma progression.
Ophthalmology 2013;120:2485-2492.
30. Kim YK, Jeoung JW, Park KH. Inferior macular damage in glaucoma: its relationship to retinal nerve fiber layer defect in macular vulnerability zone.
J Glaucoma 2017;26:126-132.
31. Hwang YH, Jeong YC, Kim HK, Sohn YH. Macular ganglion cell analysis for early detection of glaucoma.
Ophthalmology 2014;121:1508-1515.
32. Wollstein G, Kagemann L, Bilonick RA, et al. Retinal nerve fibre layer and visual function loss in glaucoma: the tipping point.
Br J Ophthalmol 2012;96:47-52.
33. Lee EJ, Kim TW, Weinreb RN, et al. β-Zone parapapillary atrophy and the rate of retinal nerve fiber layer thinning in glaucoma.
Invest Ophthalmol Vis Sci 2011;52:4422-4427.
34. Mwanza JC, Chang RT, Budenz DL, et al. Reproducibility of peripapillary retinal nerve fiber layer thickness and optic nerve head parameters measured with cirrus HD-OCT in glaucomatous eyes.
Invest Ophthalmol Vis Sci 2010;51:5724-5730.
35. Wang X, Jiang C, Ko T, et al. Correlation between optic disc perfusion and glaucomatous severity in patients with open-angle glaucoma: an optical coherence tomography angiography study.
Graefes Arch Clin Exp Ophthalmol 2015;253:1557-1564.