1. Weis SM, Cheresh DA. Tumor angiogenesis: molecular pathways and therapeutic targets.
Nat Med 2011;17:1359-1370.
2. Yoshida A, Yoshida S, Ishibashi T, Inomata H. Intraocular neovascularization.
Histol Histopathol 1999;14:1287-1294.
3. Ribatti D. Endogenous inhibitors of angiogenesis: a historical review.
Leuk Res 2009;33:638-644.
4. Rezzola S, Belleri M, Gariano G, et al. In vitro and ex vivo retina angiogenesis assays.
Angiogenesis 2014;17:429-442.
5. Yoshida T, Gong J, Xu Z, et al. Inhibition of pathological retinal angiogenesis by the integrin αvβ3 antagonist tetraiodothyroacetic acid (tetrac).
Exp Eye Res 2012;94:41-48.
6. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors.
Nat Med 2003;9:669-676.
7. Siemerink MJ, Klaassen I, Van Noorden CJ, Schlingemann RO. Endothelial tip cells in ocular angiogenesis: potential target for anti-angiogenesis therapy.
J Histochem Cytochem 2013;61:101-115.
8. Kim LA, D'Amore PA. A brief history of anti-VEGF for the treatment of ocular angiogenesis.
Am J Pathol 2012;181:376-379.
9. Hirschi KK, D'Amore PA. Pericytes in the microvasculature.
Cardiovasc Res 1996;32:687-698.
10. Hellstrom M, Gerhardt H, Kalen M, et al. Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis.
J Cell Biol 2001;153:543-553.
11. Gerhardt H, Betsholtz C. Endothelial-pericyte interactions in angiogenesis.
Cell Tissue Res 2003;314:15-23.
12. Stratman AN, Schwindt AE, Malotte KM, Davis GE. Endothelial-derived PDGF-BB and HB-EGF coordinately regulate pericyte recruitment during vasculogenic tube assembly and stabilization.
Blood 2010;116:4720-4730.
13. Antonelli-Orlidge A, Saunders KB, Smith SR, D'Amore PA. An activated form of transforming growth factor beta is produced by cocultures of endothelial cells and pericytes.
Proc Natl Acad Sci U S A 1989;86:4544-4548.
14. Maisonpierre PC, Suri C, Jones PF, et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis.
Science 1997;277:55-60.
15. Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions.
Circ Res 2005;97:512-523.
16. Park SW, Yun JH, Kim JH, et al. Angiopoietin 2 induces pericyte apoptosis via α3β1 integrin signaling in diabetic retinopathy.
Diabetes 2014;63:3057-3068.
17. Connor KM, Krah NM, Dennison RJ, et al. Quantification of oxygen-induced retinopathy in the mouse: a model of vessel loss, vessel regrowth and pathological angiogenesis.
Nat Protoc 2009;4:1565-1573.
18. Hewing NJ, Weskamp G, Vermaat J, et al. Intravitreal injection of TIMP3 or the EGFR inhibitor erlotinib offers protection from oxygen-induced retinopathy in mice.
Invest Ophthalmol Vis Sci 2013;54:864-870.
19. Kielczewski JL, Hu P, Shaw LC, et al. Novel protective properties of IGFBP-3 result in enhanced pericyte ensheathment, reduced microglial activation, increased microglial apoptosis, and neuronal protection after ischemic retinal injury.
Am J Pathol 2011;178:1517-1528.
20. Wilkinson-Berka JL, Deliyanti D, Rana I, et al. NADPH oxidase, NOX1, mediates vascular injury in ischemic retinopathy.
Antioxid Redox Signal 2014;20:2726-2740.
21. Zhao M, Shi X, Liang J, et al. Expression of pro- and anti-angiogenic isoforms of VEGF in the mouse model of oxygen-induced retinopathy.
Exp Eye Res 2011;93:921-926.
22. Smith LE, Wesolowski E, McLellan A, et al. Oxygen-induced retinopathy in the mouse.
Invest Ophthalmol Vis Sci 1994;35:101-111.
23. Mendel TA, Clabough EB, Kao DS, et al. Pericytes derived from adipose-derived stem cells protect against retinal vasculopathy.
PLoS One 2013;8:e65691.
24. Park SW, Kim JH, Kim KE, et al. Beta-lapachone inhibits pathological retinal neovascularization in oxygen-induced retinopathy via regulation of HIF-1α.
J Cell Mol Med 2014;18:875-884.
25. Kim J, Chung M, Kim S, et al. Engineering of a biomimetic pericyte-covered 3D microvascular network.
PLoS One 2015;10:e0133880.
26. Buch H, Vinding T, Nielsen NV. Prevalence and causes of visual impairment according to World Health Organization and United States criteria in an aged, urban Scandinavian population: the Copenhagen City Eye Study.
Ophthalmology 2001;108:2347-2357.
27. Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis.
Lancet Glob Health 2014;2:e106-e116.
28. Feng Y, vom Hagen F, Pfister F, et al. Impaired pericyte recruitment and abnormal retinal angiogenesis as a result of angiopoietin-2 overexpression.
Thromb Haemost 2007;97:99-108.
29. Hughes S, Chan-Ling T. Characterization of smooth muscle cell and pericyte differentiation in the rat retina in vivo.
Invest Ophthalmol Vis Sci 2004;45:2795-2806.
30. Sims DE. Diversity within pericytes.
Clin Exp Pharmacol Physiol 2000;27:842-846.
31. Frank RN, Turczyn TJ, Das A. Pericyte coverage of retinal and cerebral capillaries.
Invest Ophthalmol Vis Sci 1990;31:999-1007.
32. Gerhardt H, Wolburg H, Redies C. N-cadherin mediates pericytic-endothelial interaction during brain angiogenesis in the chicken.
Dev Dyn 2000;218:472-479.
33. Patz A. Clinical and experimental studies on retinal neovascularization: XXXIX Edward Jackson memorial lecture.
Am J Ophthalmol 1982;94:715-743.
34. Ishibashi T, Inomata H, Sakamoto T, Ryan SJ. Pericytes of newly formed vessels in experimental subretinal neovascularization.
Arch Ophthalmol 1995;113:227-231.
35. Salomon D, Ayalon O, Patel-King R, et al. Extrajunctional distribution of N-cadherin in cultured human endothelial cells.
J Cell Sci 1992;102(Pt 1):7-17.
36. Barbulovic-Nad I, Au SH, Wheeler AR. A microfluidic platform for complete mammalian cell culture.
Lab Chip 2010;10:1536-1542.
37. Kim S, Lee H, Chung M, Jeon NL. Engineering of functional, perfusable 3D microvascular networks on a chip.
Lab Chip 2013;13:1489-1500.
38. Huh D, Hamilton GA, Ingber DE. From 3D cell culture to organs-on-chips.
Trends Cell Biol 2011;21:745-754.