1. Congdon N, O'Colmain B, Klaver CC, et al. Causes a nd prevalence of visual impairment among adults in the United States.
Arch Ophthalmol 2004;122:477-485.
2. Congdon NG, Friedman DS, Lietman T. Important causes of visual impairment in the world today.
JAMA 2003;290:2057-2060.
3. Stalmans I, Ng YS, Rohan R, et al. Arteriolar and venular patterning in retinas of mice selectively expressing VEGF isoforms.
J Clin Invest 2002;109:327-336.
4. Haigh JJ, Morelli PI, Gerhardt H, et al. Cortical and retinal defects caused by dosage-dependent reductions in VEGF-A paracrine signaling.
Dev Biol 2003;262:225-241.
5. Marneros AG, Fan J, Yokoyama Y, et al. Vascular endothelial growth factor expression in the retinal pigment epithelium is essential for choriocapillaris development and visual function.
Am J Pathol 2005;167:1451-1459.
6. Aiello LP, Avery RL, Arrigg PG, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders.
N Engl J Med 1994;331:1480-1487.
7. Adamis AP, Miller JW, Bernal MT, et al. Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy.
Am J Ophthalmol 1994;118:445-450.
8. Pierce EA, Avery RL, Foley ED, et al. Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization.
Proc Natl Acad Sci U S A 1995;92:905-909.
9. Miller JW, Adamis AP, Aiello LP. Vascular endothelial growth factor in ocular neovascularization and proliferative diabetic retinopathy.
Diabetes Metab Rev 1997;13:37-50.
10. Aiello LP, Northrup JM, Keyt BA, et al. Hypoxic regulation of vascular endothelial growth factor in retinal cells.
Arch Ophthalmol 1995;113:1538-1544.
11. Stone J, Itin A, Alon T, et al. Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia.
J Neurosci 1995;15(7 Pt 1):4738-4747.
12. Stone J, Chan-Ling T, Pe'er J, et al. Roles of vascular endothelial growth factor and astrocyte degeneration in the genesis of retinopathy of prematurity.
Invest Ophthalmol Vis Sci 1996;37:290-299.
13. Bai Y, Ma JX, Guo J, et al. Muller cell-derived VEGF is a significant contributor to retinal neovascularization.
J Pathol 2009;219:446-454.
14. Wang J, Xu X, Elliott MH, et al. Muller cell-derived VEGF is essential for diabetes-induced retinal inflammation and vascular leakage.
Diabetes 2010;59:2297-2305.
15. Kaelin WG Jr. The von Hippel-Lindau tumor suppressor protein and clear cell renal carcinoma.
Clin Cancer Res 2007;13:680s-684s.
16. Liao D, Johnson RS. Hypoxia: a key regulator of angiogenesis in cancer.
Cancer Metastasis Rev 2007;26:281-290.
17. Ke Q, Costa M. Hypoxia-inducible f actor-1 (HIF-1).
Mol Pharmacol 2006;70:1469-1480.
18. Pili R, Donehower RC. Is HIF-1 alpha a valid therapeutic target?
J Natl Cancer Inst 2003;95:498-499.
19. Welsh SJ, Powis G. Hypoxia inducible factor as a cancer drug target.
Curr Cancer Drug Targets 2003;3:391-405.
20. Semenza GL. Targeting HIF-1 for cancer therapy.
Nat Rev Cancer 2003;3:721-732.
21. Giaccia A, Siim BG, Johnson RS. HIF-1 as a target for drug development.
Nat Rev Drug Discov 2003;2:803-811.
22. Powis G, Kirkpatrick L. Hypoxia inducible factor-1alpha as a cancer drug target.
Mol Cancer Ther 2004;3:647-654.
23. Brown JM, Wilson WR. Exploiting tumour hypoxia in cancer treatment.
Nat Rev Cancer 2004;4:437-447.
24. Poon E, Harris AL, Ashcroft M. Targeting the hypoxia-inducible factor (HIF) pathway in cancer.
Expert Rev Mol Med 2009;11:e26
25. Gottlicher M, Minucci S, Zhu P, et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells.
EMBO J 2001;20:6969-6978.
26. Zhang ZH, Hao CL, Liu P, et al. Valproic acid inhibits tumor angiogenesis in mice transplanted with Kasumi1 leukemia cells.
Mol Med Rep 2014;9:443-449.
27. Shan Z, Feng-Nian R, Jie G, Ting Z. Effects of valproic acid on proliferation, apoptosis, angiogenesis and metastasis of ovarian cancer in vitro and in vivo.
Asian Pac J Cancer Prev 2012;13:3977-3982.
28. Marks PA, Richon VM, Breslow R, Rifkind RA. Histone deacetylase inhibitors as new cancer drugs.
Curr Opin Oncol 2001;13:477-483.
29. Drummond DC, Noble CO, Kirpotin DB, et al. Clinical development of histone deacetylase inhibitors as anticancer agents.
Annu Rev Pharmacol Toxicol 2005;45:495-528.
30. Johnstone RW, Licht JD. Histone deacetylase inhibitors in cancer therapy: is transcription the primary target?
Cancer Cell 2003;4:13-18.
31. DeNiro M, Al-Halafi A, Al-Mohanna FH, et al. Pleiotropic effects of YC-1 selectively inhibit pathological retinal neovascularization and promote physiological revascularization in a mouse model of oxygen-induced retinopathy.
Mol Pharmacol 2010;77:348-367.
32. Adams JM, Difazio LT, Rolandelli RH, et al. HIF-1: a key mediator in hypoxia.
Acta Physiol Hung 2009;96:19-28.
33. Aiello LP, Pierce EA, Foley ED, et al. Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins.
Proc Natl Acad Sci U S A 1995;92:10457-10461.
34. Rey S, Semenza GL. Hypoxia-inducible factor-1-dependent mechanisms of vascularization and vascular remodelling.
Cardiovasc Res 2010;86:236-242.
35. Brown DM, Kaiser PK, Michels M, et al. Ranibizumab versus verteporfin for neovascular age-related macular degeneration.
N Engl J Med 2006;355:1432-1444.
36. Yu F, White SB, Zhao Q, Lee FS. HIF-1alpha binding to VHL is regulated by stimulus-sensitive proline hydroxylation.
Proc Natl Acad Sci U S A 2001;98:9630-9635.
37. Mie Lee Y, Kim SH, Kim HS, et al. Inhibition of hypoxia-induced angiogenesis by FK228, a specific histone deacetylase inhibitor, via suppression of HIF-1alpha activity.
Biochem Biophys Res Commun 2003;300:241-246.
38. Williams RJ. Trichostatin A, an inhibitor of histone deacetylase, inhibits hypoxia-induced angiogenesis.
Expert Opin Investig Drugs 2001;10:1571-1573.
39. Biermann J, Grieshaber P, Goebel U, et al. Valproic acid-mediated neuroprotection and regeneration in injured retinal ganglion cells.
Invest Ophthalmol Vis Sci 2010;51:526-534.
40. Zhang Z, Qin X, Zhao X, et al. Valproic acid regulates antioxidant enzymes and prevents ischemia/reperfusion injury in the rat retina.
Curr Eye Res 2012;37:429-437.
41. Zhang Z, Qin X, Tong N, et al. Valproic acid-mediated neuroprotection in retinal ischemia injury via histone deacetylase inhibition and transcriptional activation.
Exp Eye Res 2012;94:98-108.
42. Jeong JW, Bae MK, Ahn MY, et al. Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation.
Cell 2002;111:709-720.
43. Kim MS, Kwon HJ, Lee YM, et al. Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes.
Nat Med 2001;7:437-443.
44. Kong X, Lin Z, Liang D, et al. Histone deacetylase inhibitors induce VHL and ubiquitin-independent proteasomal degradation of hypoxia-inducible factor 1alpha.
Mol Cell Biol 2006;26:2019-2028.
45. Qian DZ, Kachhap SK, Collis SJ, et al. Class II histone deacetylases are associated with VHL-independent regulation of hypoxia-inducible factor 1 alpha.
Cancer Res 2006;66:8814-8821.
46. Lin M, Chen Y, Jin J, et al. Ischaemia-induced retinal neovascularisation and diabetic retinopathy in mice with conditional knockout of hypoxia-inducible factor-1 in retinal Muller cells.
Diabetologia 2011;54:1554-1566.
47. Mowat FM, Luhmann UF, Smith AJ, et al. HIF-1alpha and HIF-2alpha are differentially activated in distinct cell populations in retinal ischaemia.
PLoS One 2010;5:e11103