Deep Learning-based Prediction of Axial Length Using Ultra-widefield Fundus Photography
Richul Oh, Eun Kyoung Lee, Kunho Bae, Un Chul Park, Hyeong Gon Yu, Chang Ki Yoon
Korean J Ophthalmol. 2023;37(2):95-104.   Published online 2023 Feb 9     DOI: https://doi.org/10.3341/kjo.2022.0059
Citations to this article as recorded by Crossref logo
The long and short of it: a comprehensive assessment of axial length estimation in myopic eyes from ocular and demographic variables
Gareth Lingham, James Loughman, Davoud Shariat Panah, Siofra Harrington, Kathryn J. Saunders, Gui-Shuang Ying, Hongguang Cui, Emmanuel Kobia-Acquah, Daniel Ian Flitcroft
Eye.2024; 38(7): 1333.     CrossRef
The role of saliency maps in enhancing ophthalmologists’ trust in artificial intelligence models
Carolyn Yu Tung Wong, Fares Antaki, Peter Woodward-Court, Ariel Yuhan Ong, Pearse A. Keane
Asia-Pacific Journal of Ophthalmology.2024; 13(4): 100087.     CrossRef
Prediction of Axial Length From Macular Optical Coherence Tomography Using Deep Learning Model
Richul Oh, Myeongkyun Kang, Jeeyun Ahn, Eun Kyoung Lee, Kunho Bae, Un Chul Park, Kyu Hyung Park, Chang Ki Yoon
Translational Vision Science & Technology.2024; 13(9): 14.     CrossRef
Deep learning-based estimation of axial length using macular optical coherence tomography images
Jing Liu, Hui Li, You Zhou, Yue Zhang, Shuang Song, Xiaoya Gu, Jingjing Xu, Xiaobing Yu
Frontiers in Medicine.2023;[Epub]     CrossRef