Orbital Fat Prolapse and Dermolipoma: Two Distinct Entities

Yoon-Duck Kim, M.D.,* and Robert A. Goldberg, M.D.**

*Department of Ophthalmology, Samsung Medical Center, Seoul, Korea
**Division of Ophthalmic Plastic Surgery, Jules Stein Eye Institute, UCLA School of Medicine, Los Angeles, USA.

A subconjunctival orbital fat prolapse is frequently confused with a dermolipoma clinically. These two entities have similar clinical appearances, but are clearly distinct. The clinical features, differential diagnosis, and treatment modalities of subconjunctival orbital fat prolapse and dermolipoma are discussed.

Key words: dermolipoma, orbital fat prolapse

We find that clinicians frequently confuse the distinct entities of subconjunctival orbital fat prolapse and dermolipoma. These two entities are embryologically distinct and are treated quite differently. A subconjunctival orbital fat prolapse is a herniation of intraconal orbital fat due to an acquired weakening of the Tenon's capsule by aging process, trauma or surgery.1,2 This is analogous to herniation of extraconal orbital fat into the eyelids associated with attenuation of orbital septum, which is frequently seen in elderly patients. A dermolipoma is a congenital, choristomatous tumor usually localized to the temporal aspects of the bulbar conjunctiva near the lateral canthus.3

These two entities can almost always be differentiated clinically. A subconjunctival orbital fat prolapse is a yellow, soft, mobile mass that can be indented with a cotton-tip applicator(Fig 1A). It has convex anterior border and appears larger with pressure on the globe.1 It is more common in males, with average onset of 65 years.2 A dermolipoma is a soft, pinkish-white or pinkish-yellow, non-mobile mass (Fig 2A). It may have fine hairs on the surface. It cannot be indented with a cotton-tip applicator and does not change in size with pressure on the globe. Its anterior border is generally straight or slightly concave. It occurs as a congenital lesion and demonstrates no sexual preference.4

CT imaging in cases of subconjunctival orbital fat prolapse shows characteristic findings of a fat-compatible radiolucent mass that is continuous with the intraconal fat (Fig 1B). In dermolipoma, CT imaging shows a radiolucent mass of fat density in the area of the insertion of the external rectus muscle sometimes showing posterior extension. Bijpe et al5 reported CT data suggesting dermolipoma to be continuous with the orbital fat. Our findings based on high-resolution MRI (Fig 2B) suggest that dermolipoma may be isolated from the orbital fat, which one might expect based on the embryogenesis of these choristomatous tumors.

Orbital fat prolapse can be easily diagnosed by clinical clues if one is aware of disease entity. We suggest that in the majority of cases there is no need to order expensive orbital imaging such as CT or MRI. Surgical treatment of orbital fat prolapse is
Fig. 1. (A) Clinical appearance of subconjunctival orbital fat prolapse. (B) Coronal CT scan shows that radiolucent mass is continuous with the intraconal fat (arrow).

Fig. 2. (A) Clinical photograph of a 30 year old woman with dermolipoma. (B) High resolution MRI scan shows that the dermolipoma is encapsulated posteriorly and distinct from the orbital fat; the superb tissue contrast of MRI may be better than CT scan to make this determination.

REFERENCES

recommended if the prolapsed tissue causes irritation, if other diagnosis is suspected, or for cosmetic purposes. Prolapsed orbital fat is easily removed through a perlimbal conjunctival incision; the fat “flows” out of the orbit much as in transconjunctival blepharoplasty. After excision of fat, we usually locate one or two fornix-forming sutures with 4-0 double-armed chromic catgut in order to prevent recurrent herniation by making scar tissue barrier. Dermolipomas are resected more conservatively, with limited debulking of the anterior portion of the tumor, to avoid strabismus, ptosis and lacrimal gland damage which can occur following aggressive resection.
PORTABLE SCOPE, STAND IDEAL FOR MISSION TRIPS

MIAMI—The Vasconcellos, the Brazilian clone operating microscope now has a lightweight, stable, strut-stabilized floor stand for Welsh Surgical Microscopes. The body has a coaxial illuminating system, coaxial teaching/observer tube and beam splitter, table clamp stand with boom arm, and transformer. All pieces pack into a carrying case, the whole weighing 42 pounds and making it ideal for mission or satellite eye surgery. The stand also is interchangeable with the Zeiss OPMI #1 microscope body. The teaching/observer tubes with beam splitters are loaned free for eye surgery teaching trips to impoverished countries.

For further information, contact Welsh Surgical Microscopes, 1600 Onaway Dr, Miami, FL 33133; (305) 856-1375.

1. A 220/110-Volt "Conversion Transformer" with foreign "Plug Adaptors" by Franzus which are for zero to 50-Watts and not 50 to 1,500-Watts (Costs are $18 to $26 at luggage stores).
2. Several ($6 to $10) small, single "Surge Protectors" which prevent the frequent burn-out of 30 Watt scope bulbs due to the frequent power-surges by the defective electricity-generators used in rural areas of poorer countries. These "Surge Protectors" also protect against inadvertent 220-Volt usage for the small 110-Volt 3-step transformers of our portable surgical microscopes.
3. A ($27) hand-held Concept "Slit-Illuminator" penlight used with a portable surgical microscope as a substitute for a Slit-Lamp when none is available. Some RK surgeons use these "Slit-pen-lights" to better evaluate corneal incision depth of RKs.
4. A small (see photograph) powerful "Conversion Transformer" with "Alligator Clamps" for converting a 12-Volt Car-Truck battery to 110-Volt alternating current for the 110-Volt microscope transformer during electricity power-failures (Cost = $80 + shipping from Clearline Concepts, 85 Fulton St., Boonton, NJ 07007).

Robert C. Welsh, MD—Mission Consultant
Welsh Surgical Microscopes
1600 Onaway Drive Miami, FL 33133
Ph/Fax 305-856-1375